Vanishing theorems on Hermitian manifolds

نویسنده

  • B. Alexandrov
چکیده

We prove the vanishing of the Dolbeault cohomology groups on Hermitian manifolds with ddc-harmonic Kähler form and positive (1, 1)-part of the Ricci form of the Bismut connection. This implies the vanishing of the Dolbeault cohomology groups on complex surfaces which admit a conformal class of Hermitian metrics, such that the Ricci tensor of the canonical Weyl structure is positive. As a corollary we obtain that any such surface must be rational with c 1 > 0. As an application, the pth Dolbeault cohomology groups of a left-invariant complex structure compatible with a bi-invariant metric on a compact even dimensional Lie group are computed. Running title: Vanishing theorems on Hermitian manifolds

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vanishing Theorems and String Backgrounds

We show various vanishing theorems for the cohomology groups of compact hermitian man-ifolds for which the Bismut connection has (restricted) holonomy contained in SU (n) and classify all such manifolds of dimension four. In this way we provide necessary conditions for the existence of such structures on hermitian manifolds. Then we apply our results to solutions of the string equations and sho...

متن کامل

The Bochner identities for the Kählerian gradients

We discuss algebraic properties for the symbols of geometric first order differential operators on almost Hermitian manifolds and Kähler manifolds. Through study on the universal enveloping algebra and higher Casimir elements, we know algebraic relations for the symbols like the Clifford algebra. From the relations, we have all the Bochner identities for the operators. As applications, we have ...

متن کامل

Vanishing Theorems on Complete K Ahler Manifolds and Their Applications

Semi-positive line bundles over compact Kahler manifolds have been the focus of studies for decades. Among them, there are several straddling vanishing theorems such as the Kodaira-Nakano Vanishing Theorem, Vesentini-Gigante-Girbau Vanishing Theorems and KawamataViehweg Vanishing Theorem. As a corollary of the above mentioned vanishing theorems one can easily show that a line bundle over compa...

متن کامل

Vanishing Theorems on Covering Manifolds

Let M be an oriented even-dimensional Riemannian manifold on which a discrete group Γ of orientation-preserving isometries acts freely, so that the quotientX = M/Γ is compact. We prove a vanishing theorem for a half-kernel of a Γ-invariant Dirac operator on a Γ-equivariant Clifford module overM , twisted by a sufficiently large power of a Γ-equivariant line bundle, whose curvature is non-degene...

متن کامل

Higgs Bundles and Holomorphic Forms

For a complex manifold X which has a holomorphic form ̟ of odd degree k, we endow E = ⊕ p≥a Λ (p,0)(X) with a Higgs bundle structure θ given by θ(Z)(φ) := {i(Z)̟} ∧ φ. The properties such as curvature and stability of these and other Higgs bundles are examined. We prove (Theorem 2, section 2, for k > 1) E and additional classes of Higgs subbundles of E do not admit Higgs-Hermitian-Yang-Mills metr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999